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The Gay-Berne mesogen: a paradigm shift?

G. R. LUCKHURST*

School of Chemistry, Univerity of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom

A Commentary on the paper ‘‘Computer simulation studies of anisotropic systems XIX.
Mesophases formed by the Gay-Berne model mesogen’’, by G.R. Luckhurst, R.A. Stephens
and R.W. Phippen. First published in Liquid Crystals, 8, 451-464 (1990).

For me this story began in 1972 with the arrival in

Southampton of Les Woodcock who held a prestigious

Ramsay Memorial Fellowship. His background was in

the computer simulation of liquids and he had come to

Southampton to use this powerful technique to study

molten salts. However, in addition to his research he

gave a course of lectures on computer simulation of

condensed phases, largely intended for postgraduate

students as part of their doctoral training. I decided to

attend these lectures and, because he knew of my

primary interest in liquid crystals, he included a

description of the seminal work of Lebwohl and

Lasher on the Monte Carlo simulation of a model

nematic [1]. Certainly this was of some interest to me

but at the time I had been working on the molecular

field theories of liquid crystals, extending the powerful

Maier-Saupe theory [2]. These had appeared to be

rather successful [3] and at the time I must confess that I

could not really appreciate the benefits of the simulation

approach to the investigation of liquid crystals at the

molecular level; how wrong can one be? However, it was

to be five years before I recognised my error and the

enormous value of simulation studies of liquid crystals

both in understanding the interactions responsible for

their existence and in determining their properties. The

key to such studies is, to a large extent, the construction

of the pair potential which controls the molecular

interaction energy; this important stage is analogous to

the design of mesogenic molecules in the investigation

of liquid crystal behaviour. Our early research was

founded on the Lebwohl-Lasher model [1] in which the

molecules are restricted to the sites of a simple cubic

lattice and the nearest neighbours interact through the

simplest potential consistent with liquid crystallinity,

namely

Uij~{eP2 ûi
:ûj

� �
: ð1Þ

Here ûi and ûj are unit vectors parallel to the symmetry

axes of the rod-like molecules. This model, necessarily,

has an extreme computational simplicity and so even at

this early stage of liquid crystal simulations the
computational facilities available were sufficient to

study the thousands of molecules needed to characterise

the weak transition exhibited by this model nematogen.

We and others have elaborated the Lebwohl-Lasher

model to enable the investigation of a wide range of

liquid crystal behaviour. These studies have included

the influence of the lattice dimensionality and interac-

tion range on the phase behaviour [4], the ability to
form biaxial as well as uniaxial nematics [5], pretransi-

tional behaviour [6], the influence of external fields on

the phase transisition [7], mixtures of rods and plates for

solute ordering [8] and phase symmetry [9], the success

of the molecular field approximation in understanding

nematics [10], determination of the elastic constants

[11], the optical textures of biaxial nematics [12], higher

and lower rank anisotropic interactions [13], interac-
tions modelled through the elastic energy [14] and on

hard core interactions [15].

Although the Lebwohl-Lasher model and its variants

have been successful it is clear that since the molecules

are confined to lattice sites the phases that the system

can form have long range translational order in three

dimensions and so, strictly, cannot be a liquid or a

liquid crystal. In addition, the anisotropic interaction is

too simplistic, being built on attractive interactions and

excluding the anisotropic repulsive interactions thought
to be particularly important for the structure of liquids

and liquid crystals. In fact, we had already developed an

off-lattice model [16] whilst we were busy investigating

the lattice models. The scalar interaction was taken to

be the Lennard-Jones 12-6 potential

U rij

� �
~4e s

�
rij

� �12
{ s

�
rij

� �6
h i

, ð2Þ

which works so well for atoms. Here, s is the contact

distance and e is the depth of the attractive well. The*Email: gl@soton.ac.uk

Liquid Crystals, Vol. 33, Nos. 11–12, November–December 2006, 1389–1395

Liquid Crystals
ISSN 0267-8292 print/ISSN 1366-5855 online # 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/02678290601140456

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



anisotropic potential was taken to have the same form

as in the Lebwohl-Lasher model (see equation (1)) but

scaled with a parameter l. Since, in the simulation, e
scales the energy and s scales the distance, the only

unknown is l which distinguishes one model nematogen

from another. For a certain range of l a nematic phase

is found between the crystal phase and the isotropic

liquid. Although this nematic phase is more realistic

than that formed by the Lebwohl-Lasher model, it is

unrealistic in that it cannot form smectic phases and the

anisotropic potential does not include repulsive inter-

actions.

Fortunately, the foundation for the development of

simple yet realistic potentials for mesogenic molecules

had been laid by Corner [17] in 1948. His clever idea was

to assert that the pair potential for molecules had the

same distance dependence or form as for atoms, for

example the Lennard-Jones 12–6 potential, but with a

contact distance and a well depth which now depend on

the orientations of the molecules with respect to each

other and to the intermolecular vector, r̂ij; that is on the

three scalar products ûi
:ûj, ûi

:r̂ij and ûj
:r̂ij for cylindri-

cally symmetric particles. At the time Corner suggested

that s and e might be expanded in terms of these scalars.

However, the expansion he proposed could not

converge for mesogenic molecules with their length-to-

breadth ratio of 3:1 or more. Berne and Pechukas [18]

referred, implicitly, to Corner’s idea and to determine

the well depth and contact distance they treated the

molecules as ellipsoidal in shape with a Gaussian charge

distribution. Evaluating the overlap between two such

distributions gives the orientation dependence of the

contact distance, s ûi ûj r̂ij

� �
, with the result

s ûi ûj r̂ij

� �
~

s0 1{x
ûi
:rij

� �2
z ûj

:r̂ij

� �2
{2x ûi

:r̂ij

� �
ûj
:r̂ij

� �
ûi
:ûj

� �

1{x2 ûi
:ûj

� �2
� �

0

@

1

A

2

4

3

5

�1=2

,
ð3Þ

where s0 is the contact distance when the molecules are

in the cross configuration. The parameter x is deter-

mined by the length-to-breadth ratio, k, of the ellipsoid

and is

x~ k2{1
� ��

k2z1
� �

: ð4Þ

The well depth is taken to have a far simpler orientation

dependence,namely

e~e0 1{x2 ûi
:ûj

� �2
� ��1=2

, ð5Þ

where e0 is the well depth, again for the cross

configuration. This Corner potential would seem to be

ideal; it is a single site potential and so computationally

attractive and depends on just a single parameter

namely the length-to-breadth ratio, k.

Although attempts were made, by Kushick and Berne

[18], to simulate the behaviour of a model mesogen

interacting with this Corner potential it was soon

realised that it suffered from two major failings. First,

the well width is found to increase with the contact

distance, s ûi ûj r̂ij

� �
, for the molecules which is unrealis-

tic, this was noted by Stone [19] who suggested that a

shifted distance rather than a scaled separation might be

used. Secondly, the well depth depends only on the

angle between the molecular symmetry axes and not on

the angle they make with the intermolecular vector. In

other words, the well depth for molecules that are in the

side-by-side configuration would be the same as when

they are end-to-end which is clearly unrealistic; the

former should be appreciably larger than the latter. This

limitation was noted, implicitly, by Tsykalo and Bagmet

who proposed a simple modification to the expression

for the well depth involving s ûi ûj r̂ij

� �
[20]. Both

problems were addressed by Gay and Berne in the

Corner potential that they developed [21]. In this the

shifted potential suggested by Stone is used, namely

U ûi ûjrij

� �
~4e ûi ûj r̂ij

� �
R{12

ij {R{6
ij

� �
, ð6Þ

where

Rij~ rij{s ûi ûj r̂ij

� �
zs0

� ��
s0: ð7Þ

The well depth is also modified in a way which is a

generalisation of that suggested by Tsykalo and Bagmet

[20] and is now written as

e ûi ûj r̂ij

� �
~e0en ûi ûj

� �
e0m ûi ûj r̂ij

� �
, ð8Þ

where

e0 ûi ûj r̂ij

� �
~1{

x0
ûi
:r̂ij

� �2
z ûj

:r̂ij

� �2
{2x0 ûi

:r̂ij

� �
ûj
:r̂ij

� �
ûi
:ûj

� �

1{x02 ûi
:ûj

� �2
� �

0

@

1

A
ð9Þ

and

x0~ k01=m{1
� ��

k01=mz1
� �

: ð10Þ

Here k9 is the ratio of the well depths when the

molecules are in the side-by-side and end-to-end

configurations.

As we shall see the Gay-Berne potential certainly

overcomes the problems of that proposed by Berne and

Pechukas [18] but at a price. In addition to the

parameters s0 and e0 used to scale the distance and

energy, there are now three unknown parameters k9, m
and n as well as k. The involvement of these adjustable
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parameters should not be unexpected, after all meso-

genic molecules also have a real complexity which

usually results in a rich liquid-crystalline behaviour. If

this richness is to be mimicked by model systems then

the pair potential will need to embody an anologous

complexity. It seems sensible to have a mnenomic to

denote the different Gay-Berne model mesogens just as

there are for real mesogens; the mnenomic GB(k, k9, m,

n) has been proposed [22].Values for these parameters

were obtained by Gay and Berne through mapping the

Gay-Berne potential onto the pair potential for a linear

array of four Lennard-Jones sites; this gave k53.0,

k955.0, m52 and n51. The distance dependence of the

potential energy for a pair of GB(3.0, 5.0, 2, 1)

molecules in four particular configurations is shown in

figure 1(a). The combined forms of these dependences

are physically realistic; for example, in the side-by-side

configuration the contact distance is small while the well

depth is large. In contrast, for the end-to-end config-

uration the contact distance is large while the well depth

is small. Surprisingly, the significance of this new

generic potential for mesogenic molecules was essen-

tially ignored and five years after its publication no

simulations of the phase behaviour for GB(3.0, 5.0, 2, 1)

or indeed of any of its analogues had been reported. We

decided, therefore, to undertake a microcanonical

ensemble molecular dynamics simulation of this model

mesogen and were delighted to be able to demonstrate

the formation of a nematic phase in addition to the

isotropic phase [23].

It might have been expected that below the nematic

phase there would be one or more smectic phases but

for some reason we did not look for these. Certainly at

the time we were also involved in experimental studies

of liquid crystals using NMR [24] and ESR [25]

spectroscopy, as well as theoretical investigations [26]

and the synthesis of novel liquid crystal dimers [27].

However, about a year later the 12th International

Liquid Crystal Conference was to be held in Freiburg in

1988, the hundredth anniversary of Reinitzer’s discov-

ery of liquid crystals. We decided to continue our

investigations of the Gay-Berne mesogen for presenta-

tion at this important conference. By this stage a new

research student had joined the Group and was actively

involved in the simulations; it seemed sensible, there-

fore, to ask him to extend the simulations to lower

temperatures. The expected smectic phases duly

appeared which was, none the less, amazing. These

phases were identified as smectic A and smectic B using

snapshots constructed from molecular coordinates

taken from the production stage of the simulations. In

the same way we were also able to show that the Gay-

Berne mesogen formed isotropic, nematic and crystal

phases. The snapshots of these five phases are given in

figure 3 of the 1990, Gay-Berne paper and, even today,

the molecular organisation is clearly apparent and

allows, what we considered to be, a convincing

identification of the phases. Of course, we might have

attempted a more quantitative characterisation by

calculating the order parameters needed to identify the

isotropic, nematic, smectic A, smectic B and crystal

phases, that is the orientational, translational and bond

orientational order parameters, as we have done in later

studies of another Gay-Berne model mesogen [22].

When we came to prepare the results for presentation

at the 12th ILCC in Freiburg we realised that instead of

simulating the model mesogen, GB(3.0, 5.0, 2, 1) the

values of the exponents had been exchanged and that we

had, in fact, simulated GB(3.0, 5.0, 1, 2). To see how

this exchange of the exponents in the Gay-Berne

potential might have influenced the phase behaviour

we constructed the potential energy curves for GB(3.0,

5.0, 1, 2) and the results are shown in figure 1(b) for the

same set of four configurations. The most dramatic

difference is clearly the increase in the well depth for the

molecules that are side-by-side. Because of the scaling

for energy and distance by e0 and s0, respectively the

well depth for the cross configuration does not change

but for the end-to-end configuration there is also an

increase corresponding to that for the side-by-side

configuration; indeed the ratio of the well depths is just

k9 which does not depend on the exponents. It is

tempting to imagine that the growth in the side-by-side

well depth would stabilise the phases with layer

structures which we had observed. Our work was

published [28], in what has proved to be a well-sited

paper, about 18 months after it had been presented at

Freiburg.

These two papers [23, 28] on Gay-Berne models

helped to establish this class of Corner potential as an

ideal generic potential for investigating liquid crystals.

However, the question as to the choice of the values for

the four parameters remained a difficult issue. The

selection of the length-to-breadth ratio is relatively

straightforward, simply from the molecular geometry.

The determination of the ratio of the well depths, k9, is

not so obvious and there is no real guidance as to how

the exponents, m and n, are related to the molecular

structure. To overcome these problems we decided to

map the Gay-Berne potential onto that for a pair of

mesogenic molecules interacting through an atomistic

potential constructed from Lennard-Jones sites [29].

The mesogenic molecule chosen was p-terphenyl which

is linear, semi-rigid and has a virtual nematic-isotropic

transition temperature of 360K; both carbon and

hydrogen sites were included in the calculation of the
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pair potential. P-terphenyl is, however, biaxial and so to

map the potential onto that for uniaxial Gay-Berne

molecules it is necessary to project out the contribution

originating from the biaxiality. The parameters

obtained from this fitting process were k54.4,

k9539.6, m50.8 and n50.74; these clearly differ from

those first introduced by Gay and Berne with the most

significant difference being for the well depth ratio, k9.

Preliminary simulations showed that this Gay-Berne

model mesogen formed both nematic and smectic A

phases. Far more detailed NPT Monte Carlo simula-

tions have been performed for the related parameter set

in which m and n were given the integer values of 1 and

k9 was reduced to 20 [22]; these simulations showed that

Figure 1. The distance dependence of the pair potential for the Gay-Berne mesogens GB(3.0, 5.0, m, n) for four configurations of
the two molecules, side-by-side ( ), end-to-end ( ), cross ( ) and tee ( ) with (a) m52, n51, (b) m51, n52, (c) m51, n51 and (d)
m51, n53; here r*5rijs0.
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this GB(4.4, 20.0, 1, 1) model mesogen also forms

isotropic, nematic, smectic A and possibly smectic B

phases. To see how the change in the energy exponents

effects the pair potential we show, in figure 1(c), the

results for the mesogen GB(3.0, 5.0, 1, 1). In compar-

ison with GB(3.0, 5.0, 2, 1) (see figure 1(a)) the only

change is for the well depth of the tee configuration

which is reduced slightly but in comparison with

GB(3.0, 5.0, 1, 2) (see figure 1(b)) there is a major

reduction in the well depth for the side-by-side

configuration. This seems likely to decrease the

possibility of the mesogen forming a smectic phase

but as we have seen this effect can be compensated for

by increasing k9, as with GB(4.4, 20.0, 1, 1). An

alternative approach is to increase the exponent n as is

clearly demonstrated by GB(3.0, 5.0, 1, 3) proposed by

Barardi et al. [30]; the resultant potentials are shown in

figure 1(d) and the anticipated increase in the well depth

for the side-by-side configuration is clearly apparent. It

is not surprising, therefore, to find that this mesogen

also forms a smectic phase. The phase diagram of the

original Gay-Berne mesogen, GB(3.0, 5.0, 2, 1), has

been investigated de Miguel et al. [31] and was shown to

form nematic and smectic B phases although later

simulations have identified the smectic B as a crystal

[32]. These early simulation studies have demonstrated

that the combination of anisotropic attractive and

repulsive interactions is essential for the phase beha-

viour observed for the Gay-Berne mesogens and for the

fact that the phase transitions are thermally driven. This

is important because they are key features of the

behaviour of real mesogens.

Since these pioneering investigations of liquid crystal

behaviour, using computer simulation, it has been

especially pleasing to see how widely the Gay-Berne

model has been employed. These studies have blos-

somed partly by extending the potential through the

inclusion of other interactions and by exploring a wide

range of liquid crystal behaviour. Both aspects have

been reviewed [33, 34] which is a clear sign of the

maturity of the field. Despite the reviews I am unable to

forgo this opportunity to highlight some of my

favourite studies. These include the extension of the

Gay-Berne potential to disc-like molecules which are

found to form both nematic and columnar phases [35];

electrostatic terms, both dipolar and quadrupolar, have

been added; the influence of the dipoles in dipolar Gay-

Berne rods on their phase behaviour and structure has

been widely studied [36] while quadrupolar rods form a

tilted smectic phase [37]; for quadrupolar discs the

quadrupolar interaction destabilises the columnar

phase; in contrast for a mixture of quadrupolar discs

with quadrupole moments opposite in sign there is an

induced columnar phase [38]; chiral Gay-Berne mesogens

have also been constructed and appear to have a rich

phase behaviour [39]; a Gay-Berne mesogen has also

been used as a host for chiral solutes to evaluate their

helical twisting powers [40]; two Gay-Berne mesogens

have been linked with a flexible spacer to form a

potentially valuable model for liquid crystal dimers

[41]; the Gay-Berne potential has been extended to

biaxial molecules [42] and used successfully to explore the

factors responsible for biaxial nematics [43]; this phase

has also been found for biaxial molecules formed from

fused Gay-Berne-like discs [44]; an analogous approach

has been adopted to create a pear shaped molecule to

study flexoelectricity [45]; the molecular organisations in

encased liquid crystal droplets [46] and at the interface

with the isotropic phase [47] have been determined; the

X-ray scattering patterns for the phase simulated [48];

this potential has even been used effectively to model the

hydrocarbon region of biologically relevant membranes

[49]; simulations have also been performed to investigate

the dynamic properties of Gay-Berne mesogens including

the rotational viscosity [50], the Leslie viscosity coeffi-

cients [51] and the translational diffusion tensor [52].

This is almost the end of my story but clearly not of

computer simulation studies of liquid crystals based on

the ubiquitous Gay-Berne potential; its introduction

certainly represented a major change in the way we

model mesogenic molecules and the potential still has

much to offer. Its generic nature and computational

simplicity continues to make it an attractive way to

answer rather general questions concerning liquid

crystals. In addition, other Corner potentials have been

introduced including that by Zewdie [53] which is based

on a so-called S-function expansion of the contact

distance and the well depth. It has the distinct

advantage over the Gay-Berne model that the shape

of the molecule can be changed including the introduc-

tion of polar and quadrupolar shapes [53, 54]. The

continuing enhancement in computational power avail-

able to simulators means that significantly large

numbers of Gay-Berne molecules can be studied, often

with unique consequences. This enhancement in power

also means that it is now possible to use sensible

numbers of molecules interacting through an atomistic

potential including electrostatic interactions [55]; almost

by definition such models will include all of the

complexities and richness of real mesogenic molecules.

They are, therefore, very specific models for particular

mesogens and are being used to answer rather particular

and important questions concerning liquid crystals and

their behaviour. The future for such demanding

simulations seems bright complementing as they do

studies based on the generic Gay-Berne potential.
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Computer simulation studies of anisotropic systems XIX.
Mesophases formed by the Gay–Berne model mesogen{
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{Department of Chemistry, The University, Southampton, SO9 5NH, England
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We report the results of a molecular dynamics computer simulation of particles interacting
via the Gay–Berne potential with parameters selected to approximate those of mesogenic
molecules. The system was found to form a variety of mesophases as the temperature was
lowered. We have characterized these phases with the aid of computer graphics techniques to
visualize the molecular organization within configurations taken from the production stage of
the simulations. The phases have been identified, on the basis of such images, as isotropic,
nematic, smectic A, smectic B and crystal.

1. Introduction

The major requirement for a compound to form a liquid

crystal mesophase is that its constituent molecules

deviate from spherical symmetry. Although molecules

with a wide range of shapes have been found to exhibit

liquid crystals the most common form is undoutedly

rod-like [1]. In consequence the majority of computer

simulations of liquid crystal behaviour have taken the

particles to be cylindrically symmetric. The pioneering

Monte Carlo simulations by Lebwohl and Lasher

assumed a weak anisotropic potential [2], analogous

to that expected at long range. However it is appre-

ciated that for real mesogens the anisotropic potential

has important contributions from repulsive short range

as well as the attractive long range interactions. In an

attempt to provide computationally simple potentials

for relatively complex molecules Berne and his collea-

gues have developed a series of potentials based on the

gaussian overlap model [3]. Although the earlier

versions of these were used in computer simulations of

liquid crystal behaviour, apparently with some success,

it was realized, eventually, that the Berne–Pechukas–

Kushick potential had several unrealistic features [4].

Thus for parallel molecules the well depth is indepen-

dent of their orientation with respect to the intermole-

cular vector. In addition the width of the attractive well

was found to vary with the molecular orientation with

respect to the intermolecular vector.

To rectify these deficiencies Gay and Berne have

modified the original gaussian overlap potential in an

essentially phenomenological manner [5]. Thus, they

attempted to obtain a function which gave the best fit to

the pair potential for a linear array of four equidistant

Lennard-Jones centres with a separation of 2s0 between

the first and fourth sites. The form adopted for the total

potential is

U û1, û2, r
� �

~4e û1, û2, r̂
� �

|
s0

r{s û1, û2, r̂
� �

zs0

( )12
2

4 {
s0

r{s û1, û2, r̂
� �

zs0

( )6
3

5,
ð1Þ

where û1, û2 are unit vectors giving the orientation of the

two particles, r is the intermolecular vector, the

associated unit vector is r̂ and r is the molecular

separation. The parameters in the potential are orienta-

tion dependent; e û1, û2, r̂
� �

is the well depth and

s û1, û2, r̂
� �

is the intermolecular separation at which

the attractive and repulsive terms cancel. The functional

dependence of this distance is, as in the Berne–

Pechukas–Kushick potential,

s û1, û2, r
� �

~s0 1{
1

2
x

r̂:û1zr̂:û2

� �2

1zx û1
:û2

� �

("

z
r̂:û1{r̂:û2

� �2

1{x û1
:û2

� �

)#{1=2

,

ð2Þ
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where s0 is a constant which we shall identify shortly.

The shape anisotropy parameter, x, is

x~ se=ssð Þ2{1
n o.

se=ssÞ2z1
n o

, ð3Þ

where se is the separation when the molecules are end-

to-end and ss that when they are side-by-side. In other

words se and ss are essentially the length and breadth of

the particle; x vanishes for spherical particles and is one

for infinitely long rods and minus one for infinitely thin

disks.

We shall write the depth of the well as

e û1, û2, r̂
� �

~e0ev û1, û2

� �
e0m û1, û2, r̂
� �

, ð4Þ

where

e0e û1, û2

� �
~e0 1{x2 û1

:û2

� �2
n o{1=2

, ð5Þ

as in the original Berne–Pechukas–Kushick potential

[3]. The new term has an angular dependence reminis-

cent of that for s û1, û2, r̂
� �

namely

e0 û1, û2, r̂
� �

~1{ x0=2ð Þ
r̂:û1zr̂:û2

� �2

1zx0 û1
:û2

� �

(

z
r̂:û1{r̂:û2

� �2

1{x0 û1
:û2

� �

)

,

ð6Þ

where the parameter x9 is related to the anisotropy in

the well depth via

x0~ 1{ ee=esð Þ1=m
n o.

1z ee=esð Þ1=m
n o

: ð7Þ

The well depth e û1, û2, r̂
� �

and the intermolecular

separation s û1, û2, r̂
� �

clearly change with the orienta-

tions of the molecules and the intermolecular vector. To

illustrate this dependence as well as the significance of

the parameters se, ss, ee and es we give in the table the

values of e û1, û2, r̂
� �

and s û1, û2, r̂
� �

for orientations of

particular significance and simplicity. These are the end-

to-end (e), the side-by-side (s), the cross (X) and the tee

(T) configurations. From the table we can see that in the

cross configuration both the well depth and the

intermolecular separation are independent of the para-

meters x, x9, v and m characterizing the Gay–Berne

potential; they are just e0 and s0, respectively. When the

molecules are in the side-by-side configuration the

intermolecular separation is also s0 and so it seems

logical to identify this as ss. With this identification the

separation in the end-to-end configuration is se as we

might have anticipated. The well depths for these two

configurations do not have such a simple interpretation

for they both depend on the shape anisotropy parameter

x and are not simply ee and es. However the ratio of

the well depths for the end-to-end and side-by-side

configurations is just ee/es. In the tee configuration

neither the well depth nor the intermolecular separa-

tion takes a particularly simple form. The exponents v

and m in equation (4) are treated as adjustable

parameters; to obtain the best fit to the linear array

of four Lennard-Jones centres v was set equal to 1 and

m was equal to 2.

The ability of particles interacting via this particular

form of the Gay–Berne potential to exhibit liquid-

crystalline behaviour has been studied using the

molecular dynamics computer simulation technique

[6]. The length-to-breadth ratio, se/ss, was set equal to

3 which is typical of a mesogenic molecule and ee/es was

given the value of 1/5 found for the linear array of four

Lennard-Jones centres [5]. It was discovered that at a

scaled density r � :Ns3
0

�
V

� �
of 0.32 and for scaled

temperatures T* (;kT/e0) less than 1.7 the system

exhibits a nematic phase with long range orientational

order and just short range translational order. In this

simulation we had not attempted to locate other liquid

crystal phases such as a smectic A which has a layer

structure with short range translational order within the

layers [7]. However, in computer simulations of hard

spherocylinders with a length-to-breadth ratio of 6:1

Frenkel has discovered that this system can exist, not

only as a nematic phase, but also as a smectic A phase at

a higher density [8]. In contrast it has been argued by

Frenkel that it is most unlikely that a smectic phase

could be formed by hard ellipsoids [9]. It is important

therefore in judging the likely phase behaviour of a set

of particles interacting via the Gay–Berne or indeed any

potential model to know their shape. This may be

defined in a variety of ways and for our purposes here

we take the shape to given by the contour correspond-

ing to the change of the potential energy from positive

to negative. Since we wish to visualize this contour in

two dimensions we must also constrain the molecular

orientations and we take the particles to be parallel so

that the remaining variable is their orientation to the

intermolecular vector. This contour is obtained directly

from s û1, û2, r̂
� �

given by equation (2) and is shown in

figure 1 together with several other contours for

The well depth e û1, û2, r̂
� �

and intermolecular separation
s û1, û2, r̂
� �

for particular orientational configurations.

Configuration s û1, û2, r̂
� �

e û1, û2, r̂
� �

e s0se/ss (;se) e0(ee/es)(1–x2)2v/2

s s0 (;ss) e0(1–x2)2v/2

X s0 (;ss) e0

T s0!{(se/ss)
2+1}/2 e0{2/[(es/ee)

1/m+1]}m
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different values of the attractive potential energy. These

were calculated with the choice of parameters used in

the computer simulation experiments and described in

the following section. We see from such contours that

the shape of the particles interacting via the Gay–Berne

intermolecular potential is ellipsoidal and certainly not

spherocylindrical. In consequence we might be led to

expect that the search for a smectic phase formed by

such particles would be fruitless. However the strong

side-by-side interactions (es.ee) for this potential model

should stabilize the smectic phase even though the shape

of the particle is ellipsoidal. This turns out to be the case

and here we describe the results of our simulation

experiments.

2. Molecular dynamics simulation

The parameterization of the well depth function

e û1, û2, r̂
� �

used in the simulation differed slightly from

that employed previously. Thus the exponents v52 and

m51 were used rather than v51 and m52; this does not

influence the relative well depths for the side-by-side or

end-to-end configurations. However with the new

parameterization the side-by-side configuration is rela-

tively more stable with respect to the cross and tee

configurations. Since these configurations are not

compatible with the molecular organization within a

liquid crystal phase we expect this new parameterization

of the Gay–Berne potential to have a greater propensity

for mesophase formation. The variation of the scaled

potential energy U û1, û2, r̂
� ��

e0 as a function of the

scaled molecular separation, r/s0, for these particular

configurations calculated for the two choices of

exponents are shown in figure 2.

The system studied contained 256 particles with the

usual cubic periodic boundary conditions, nearest image

summation and a cut-off of 3.8s0. The ratios se/ss and

ee/es were assigned the values used in the previous

simulation [6]. Similarly, the scaled component of the

inertia tensor perpendicular to the molecular symmetry

axis I�\~I\
�

ms2
0

� �
was assigned the value of 4. This

was chosen to ensure that the optimum time steps for

both the orientational and translational coordinates

were approximately the same. We note, however, that

this value is not consistent with that for an ellipsoid of

revolution of length 3s0 and breadth s0 with the mass

uniformly distributed in it. For this ellipsoid I�\ is just

1/2; however the difference in I�\ is unimportant here

because we are only concerned with the structural

properties of the phases exhibited by the Gay–Berne

Figure 1. Potential energy contours calculated for parallel molecules interacting via the Gay–Berne potential as a function of their
separation and their orientation with respect to the intermolecular vector. The parameterisation of the potential is that used in the
molecular dynamics simulation and described in the text.
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mesogen. The symmetry of the potential allows us to

decouple the motion about the long axis from the

simulation. The equations of motion were integrated

using a Verlet algorithm in a method identical to that

described by Pollock and Alder [10]. The equations of

motion together with the forces and torques obtained

from the Gay–Berne potential are listed in the

Appendix. In the simulation the scaled density was set

equal to 0.30, which is slightly lower than that

(r*50.32) employed in the earlier investigation, in an

attempt to facilitate the equilibration of the system. The

calculations were performed on an IBM 3090–150 VF

where each time step required about 1 s of c.p.u. time

for its calculation. In the simulations the scaled time

step Dt*, where t* is e0

�
ms2

0

� �1=2
t was set equal to 0.005;

the scaled times for the equilibration and production

stages were typically between 25 and 50.

The first simulation was performed at a high scaled

temperature of 3.0 taking a disordered configuration

from a previous simulation as the starting point. The

equilibrium second rank orientational order parameter,

P̄2, was evaluated from the diagonalized Q tensor [11]

and found to be approximately 0.09. For such a small

number of particles this value indicates that the phase is

isotropic; the value is not zero because of the statistical

error in evaluating Q [12] and the influence of short

range angular correlations in a small system. The scaled

temperature was then lowered to approximately 2.0, 1.5,

1.0 and 0.5 with the initial configurations for the

simulation being taken from the production stage of the

preceding temperature. The actual scaled temperatures

for the simulations were 3.00, 2.19, 1.49, 1.00 and 0.50.

The orientational order parameter was observed to

increase with decreasing temperature and to take the

values 0.41 (T*52.19), 0.81 (T*51.49), 0.91 (T*51.00)

and 0.98 (T*50.50).

The nature of the phases at these temperatures can be

characterized with a range of singlet and pair distribu-

tion functions. Thus the orientational order is reflected

by the singlet orientational distribution of the molecules

with respect to the director. Similarly translational

ordering within the smectic phases is contained in the

singlet translational distribution function of the mole-

cules along the director. The nature of the molecular

organization within a smectic layer could then be

determined from the two dimensional radial distribu-

tion function together with the bond orientational

correlation function. An alternative approach is simply

to visualize the arrangement of the particles in a

particular configuration taken from the production

stage of the simulation. We have adopted the latter

approach using an IBM WINGS vector graphics

software package. This allows us to manipulate the

image in real time and so to examine different features

of the molecular organization in the configuration.

3. The mesophases and their identification

Images, photographed from the screen of an IBM 5080

are shown in figure 3 for the simulations at scaled

temperatures of approximately 3.00, 2.19, 1.49, 1.00 and

0.50. In the images the molecules are drawn as lines

whose length is somewhat shorter than required to be in

correct proportion to the size of the simulation box; this

enables the molelcular organization to be discerned

more easily. In addition the director is also represented

in the figures as a thick vertical line through the centre

of the box. The orientation of this line with respect to

the box was obtained from the Q tensor for the single

configuration shown. The length of the director is

proportional to the order parameter P̄2 equated with the

Figure 2. The distance dependence of the energy calculated
from the Gay–Berne potential for particular orientations of
the molecules with respect to each other and to the
intermolecular vector. The exponents were assigned (a) their
original values, v51 m52, and (b) the values v52, m51
employed in this investigation. The ratios of the other
parameters, se/ss and ee/es were given the values used in the
computer simulation.
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largest eigenvalue of Q, again for the single configura-

tion. Perfect orientational order (P̄251) corresponds to

the director length equal to that of the side of the cube.
The configuration at the highest scaled temperature has

a low order as is evident from the essentially random

arrangement of the molecular orientations (see fig-

ure 3 (a)). The distribution of the centres of mass is also

observably random thus confirming this as the isotropic

phase.

At the next lower temperature (T*52.19, see fig-

ure 3 (b)) the molecules are clearly orientationally
ordered with respect to the director whose length has

increased appreciably. The molecular centres of mass

are still quite random, in accord with the identification

of this as a nematic phase.

The orientational order increases significantly on

lowering the scaled temperature to 1.49, as is apparent

from the configuration shown in figure 3 (c). The

molecular organization with respect to the director is

more highly ordered as is evidenced by the dramatic

growth in the length of the line representing the

director. Of greater importance, however, is the

clear appearance of a layer structure, orthogonal to

the director, albeit with rather weak translational order.

We shall return to the nature of this smectic phase

presently.

At a still lower temperature (T*51.00) the orienta-

tional order has again grown, as we can see from the

molecular distribution with respect to the director;

indeed this order is almost complete (see figure 3 (d)).

Far more obvious is the considerable enhancement of

the translational order; the layers are now manifestly

apparent. The nature of this smectic phase may simply

be a more ordered version of that found at the previous

higher temperature or it may be another smectic

polymorph. We shall decide this question shortly.

For the sake of completeness a configuration taken

from the production run at a scaled temperature of 0.50

is shown in figure 3 (e). The essentially perfect order of

both orientational and translational coordinates is very

clear. The long range translational ordering occurs in all

three dimensions; this can be inferred from the ability to

superimpose the molecules within the layers when

looking at right angles to the director. The molecular

organization within the layers will be considered

presently. However the high order of this phase suggests

that it is a crystal, a view supported by the vibrational

and librational motion of the molecules on lattice sites

which contrast with the directly observed diffusional

motion of the molecules for the other phases.

We turn now to the molecular organization within the

layers and hence an identification of the two smectic

phases. To visualize the molecules within a layer we

construct a slice with thickness equal to the molecular

length se through the cube and orthogonal to the

director. This slice is centred on one of the smectic

layers, chosen to be near the middle of the simulation

box; the layer was located by calculating the singlet

translational distribution function along the director for

that particular configuration and selecting an appro-

priate maximum. Those molecules with their centres of

mass within the slice are represented as small spheres

corresponding to their centres. The image so obtained

for the high temperature smectic phase is shown in

figure 4 (i), (a) where the two thick lines at the side of

the box indicate the slightly reduced thickness of the

slice. The molecular centres of mass are clearly grouped

in a layer within the slice but with a reasonable

thickness corresponding to weak translational order.

For the nematic and isotropic phases the centres of

mass are found to be uniformly distributed within the

slice. To see the distribution of the molecules within a

layer the image was rotated until the director was

Figure 3. Configurations taken from the production runs of
the simulations at scaled temperatures of (a) 3.00, (b) 2.19, (c)
1.49, (d) 1.00 and (e) 0.50. In these figures the molecules are
shown as lines and the director for the configuration is
indicated by the thick vertical line whose length is propor-
tional to the second rank orientational order parameter P̄2 for
the configuration.
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orthogonal to the IBM 5080 screen. The result is given

in figure 4 (ii), (a) where the centres of mass are found

to be distributed randomly within the layer. The high

temperature smectic phase can therefore be safely

identified as a smectic A [7]. We note that the slice

through the simulation box results in some apparent

vacancies in the smectic layer. These we attribute both

to distortions of the layer and to the penetration of
some molecules from one layer into the next.

We have obtained corresponding images for the

configuration of the low temperature smectic phase,

with the results given in figure 4 (b). The thinner layer of

the molecular centres shown in figure 4 (i), (b) corre-

sponds to the higher translational order of the smectic

phase. The nature of this smectic phase is revealed in

figure 4 (ii), (b) where the distribution of the centres of

mass within the smectic plane is seen to be hexagonal,

although this order is not complete. With these limited

results and for such a small system it is very difficult to

decide on the precise character of the translational order

and bond orientational order within the smectic plane.

However the tendency of the centres of mass to form a

hexagonal arrangement suggests that the mesophase is a

smectic B. It is almost impossible to judge whether this
should be classified as a hexatic smectic B or a crystal B

phase. The image in figure 3 (d) suggests that there is

some correlation between the positions of particles in

different layers but this is not perfect. Whether the

correlation extends over many layers as in a crystal B

phase [7] or whether it it just short ranged as in a hexatic

smectic B phase cannot be discerned without being able

to study a larger sample with many more layers.

Figure 4. The molecular organization of the centre of masses within a slice of the phase orthogonal to the director, through the
centre of a smectic layer and se thick at scaled temperatures of (a) 1.49, (b) 1.00 and (c) 0.50. The images show (i) the distribution
across the layer and (ii) that within the layer. The approximate thickness of the slice is indicated by the two lines at the side of the
box.
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Again, for the sake of completeness, we show the

analogous images in figure 4 (c) for the lowest tempera-

ture phase (T*50.50) which we had identified as a

crystal. The high translational order, along the orienta-

tion of the molecular symmetry axes, is demonstrated

by the very narrow distribution of molecular centres

within the slice through the simulation box (see

figure 4 (i), (c)). The arrangement of the centres of mass

within this plane is given in figure 4 (ii), (c) and now an

essentially long range hexagonal organization is clearly

apparent. These images, together with that in fig-

ure 3 (e), support our identification of this phase as a

crystal.

It might have been expected that the simulation box

could impose some restrictions on the periodicity of the

layer structure characteristic of a smectic phase.

Certainly for a system with the director fixed parallel

to one side of the box this is clearly the case. Then the

density wave of the smectic phase must fit exactly into

the box if its layered structured is to be commensurate

with its own periodic images. This requires that

Nd~L, ð8Þ

where d is the layer spacing, L is the length of the cubic

simulation box and N is an integer. In our simulations d

is of the order of 3s0 while the box length is about 9s0;

thus the ratio L/d is quite small and so its relative

deviation from an integer value could be important. If

L/d does deviate from an integer value then the layers in

the box will be incommensurate with those in the

periodic images and the energy associated with the

disclinations so generated could be sufficient to change

the layer spacing such that the ratio L/d became integer.

However in the simulation the constraint on L/d may

not be quite so restrictive as implied by equation (8)

because the director need not remain parallel to the edge

of the simulation box. For an arbitrary orientation of

the director, n̂, the requirement for the continuity of the

smectic layers in the simulation box with those of its

periodic images requires

Na n̂ad~L, ð9Þ

where Na is an integer and a denotes x, y and z. Since n̂

is a unit vector we see that the constraint placed on d

takes the form

d~L

�
N2

xzN2
yzN2

z

� �1=2

, ð10Þ

which is somewhat easier to satisfy than equation (8).

For example, there the ratio L/d must be say either 3

or 4 whereas a range of values of L/d between 3 and

4 can be obtained from the constraint imposed by

equation (10). We expect, therefore, that the director for

the smectic phases will adopt an orientation within the

simulation box such that equation (10) is, to a good

approximation, satisfied. This certainly seems to be the

case for the system which we have studied. We should

also note that equation (10) is identical to that for the

spacing between adjacent layers with Miller indices Nx,

Ny, Ny for a cubic lattice with periodicity L. For such a

system the layers within the unit cell of the lattice (i.e.

the simulation box) are clearly commensurate with

those in all other unit cells (i.e. the periodic images).

Analogous conditions obtain within the layers of the

more ordered smectic phases and in the crystal.

However there are no ways in which the system can

satisfy these once the director orientation has been

determined by the periodicity of the smectic layers.

Fortunately the periodicity, a within a layer is relatively

small so that the ratio (L/a)2 will be large, which means

that the deviations from an integer value will be

proportionally smaller. None the less for such high

ordered systems it would be of particular interest to

perform the simulation at constant pressure rather than

constant volume. This would allow the box shape to be

changed thus revealing the true structure unperturbed

by the influence of the periodic boundary conditions

[13].

4. Conclusion

A system of particles interacting via the Gay–Berne

potential with a particular choice of parameters (se/

ss53, ee/es51/5, v52, m51) has been investigated by the

molecular dynamics simulation technique. The system is

found to exhibit a series of phases as the temperature is

lowered. These phases have been identified by using

computer graphics to visualize configurations taken

from the production stage of the simulation. It would

seem that the system possesses an isotropic, a nematic, a

smectic A, a smectic B (hexatic or crystal) and a crystal

phase. This rich polymorphism of the Gay–Berne model

mesogen makes it an ideal system with which to enhance

our understanding of the static and dynamic behaviour

of real liquid crystals.
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Appendix

Here, for the benefit of those readers unfamiliar with

the molecular dynamics simulation technique, we

provide a brief description of the methodology used in

this paper. We also give the somewhat cumbersome

expressions for the forces and torques for the Gay–

Berne potential since these will be of value for those

wishing to use this valuable model for liquid crystals in

other simulation studies.

The equations of motion for a particle can be

separated into those concerned with translation and

those dealing with rotation. The equation for the

motion of the centre of mass is

m r̈~F; ðA1Þ

here m is the total mass of the particle, F is the total

force acting on it and r̈ is the acceleration of the particle

caused by the force. For a molecule composed of several

sites i the total mass is simply

m~
X

i

mi, ðA2Þ

where mi is the mass associated with site i. The total force is

then just the sum of the forces, Fi, acting on each site

F~
X

i

Fi: ðA3Þ

The force on site i is the sum of those forces resulting from

its interaction with all other particles in the simulation box

and its periodic images. For an interaction between two

sites via the potential U the force on site i at (xiyizi) is

Fi~{

LU=Lxið Þ
LU=Lyið Þ
LU=Lzið Þ

0

B@

1

CA: ðA4Þ

The rotational analogues of these equations are

Iv̇~t, ðA5Þ

where I is the moment of inertia tensor, t is the

torque acting on the particle and v̇ is the resultant angular

acceleration. For a particle containing several sites

I~
X

i

mi ri{rð Þ ri{rð Þ, ðA6Þ

where r denotes the centre-of-mass coordinates. The

torque t acting on the particle is defined in terms of the

forces acting on each site by

t~
X

i

ri{rð Þ|Fi: ðA7Þ

The Gay–Berne potential is, however, a single site

potential, indeed this is one of its virtues. The particle

does, of course, experience a torque because of the

angular dependence of the potential. This torque is

equivalent to a force acting on a point separated by a

unit distance from the centre-of-mass and acting in a

direction orthogonal to the molecular symmetry axis.

This equivalent force can be defined in terms of the

derivative of the potential with respect to the coordi-

nates of this point where the centre-of-mass is taken as

the origin. These coordinates are just the components of

the unit vector û1 describing the molecular orientation

and so the equivalent force is

E~{

LU
�
Lû1x

� �

LU
�
Lû1y

� �

LU
�
Lû1z

� �

0

B@

1

CA ðA8Þ

and the torque is then

t~û1|E: ðA9Þ

The equations of motion for the centre-of-

mass coordinates are solved using the Verlet algorithm

[14]

r tzdtð Þ~2r tð Þ{r t{dtð Þz r̈ tð Þdt2: ðA10Þ

The equations of motion for the molecular orientation

can, in principle, be solved for the time evolution of the
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unit vector û in the same way,

u tzdtð Þ~2û tð Þ{û t{dtð Þz ¨̂
u tð Þdt2, ðA11Þ

where the angular acceleration
¨̂
u tð Þ is

¨̂
u tð Þ~E=I : ðA12Þ

For sufficiently small time steps the vector u at time t+dt

would be a unit vector but, in general, there is no

constraint on u(t+dt) to have unit length and so the hat

has been removed from this in equation (A 11). To

prevent u(t+dt) from deviating from its desired unit

length a corrective force is, in effect, applied parallel to

the molecular symmetry axis, at time t. The magnitude,

l, of this force

f tð Þ~lû tð Þ ðA13Þ

is chosen to retain û tzdtð Þ as a unit vector. It has no

other effect on the dynamics of the system. The value of

l(t) necessary to achieve this is found in the following

way. The force applied is such that at the end of the time

step u(t+dt) is a unit vector, that is

û0 tzdtð Þ~u tzdtð Þzû tð Þ l=2 ~mð Þdt2, ðA14Þ

where ~m is an arbitrary mass on which f(t) acts.

However the value of ~m can be subsumed into l by

writing equation (A 14) as

û0 tzdtð Þ~u tzdtð Þzû tð Þl0: ðA15Þ

Now taking the scalar product of each side of this

equation with itself gives a quadratic for l9 whose

solution is

l0~{û tð Þ:u tzdtð Þ+ û tð Þ:u tzdtð Þ
� �2n

{ u tzdtð Þ:u tzdtð Þ½ �z1g1=2:

ðA16Þ

The positive sign is taken since this will always give

the smallest value for l9 and so ensure that the

correction terms are minimized. These terms û tð Þl0 are

then added to the vector u(t+dt) which restores the

molecular orientation at time t+dt to being a unit

vector.

We turn now to the gradients of the Gay–Berne

potential needed in the integrated equations of motion.

To simplify the notation equation (1) for the potential is

written in terms of the scaled variable

R~ r{s û1, û2, r̂
� �

zs0

� ��
s0: ðA17Þ

The function, depending on the relative orientation of

the molecules and the intermolecular vector, which

enters the expressions for both the well depth and the

distance of closest approach is written as

g Xð Þ~1{
X

2

r̂:û1zr̂:û2

� �2

1zX û1
:û2

� �z
r̂:û1{r̂:û2

� �2

1{X û1
:û2

� �

( )

: ðA18Þ

Here X denotes either the shape anisotropy parameter x
or the well-depth anisotropy parameter x9; that is

g xð Þ{1=2
~s û1, û2, r̂
� ��

s0 ðA19Þ

and

g x0ð Þ~e0 û1, û2, r̂
� �

: ðA20Þ

As the translational coordinate of one molecule is

changed so the components of the intermolecular vector

are also altered. To make this dependence of

s û1, û2, r̂
� �

and e0 û1, û2, r̂
� �

on the intermolecular

separation explicit we write g(X) in terms of the

intermolecular vector r and the separation r,

g Xð Þ~1{
X

2r2

r:û1zr:û2

� �2

1zX û1
:û2

� �z
r:û1{r:û2

� �2

1{X û1
:û2

� �

( )

: ðA21Þ

Using this notation the gradient of the Gay–Berne

potential with respect to, say, the x coordinate of one

particle is

LU

Lx
~e0 ev û1, û2

� �
gm x0ð Þ 6R{7{12R{13

� �	
LR=Lxð Þ

z R{12{R{6
� �

mgm{1 x0ð Þ Lg x0ð Þ
Lx



,

ðA22Þ

where

LR=Lx~Lr=Lxz
s0

2
g{3=2 xð Þ Lg xð Þ

Lx
, ðA23Þ

Lr=Lx~x=r, ðA24Þ

Lg Xð Þ
Lx

~{
X

r2

r:û1zr:û2

� �

1zX û1
:û2

� �

"
L r:û1

� �

Lx
z

L r:û2

� �

Lx

� 


z
r:û1{r:û2

� �

1{X û1
:û2

� �
L r:û1

� �

Lx
{

L r:û2

� �

Lx

� 
#

z
xX

r4

r:û1zr:û2

� �2

1zX û1
:û2

� �z
r:û1{r:û2

� �2

1{X û1
:û2

� �

" #

,

ðA25Þ

L r:û1

� �

Lx
~û1x and

L r:û2

� �

Lx
~û2x: ðA26Þ

There are analogous expressions for the y and z

derivatives which then give the force F acting on a

particle (see equation (A 4)).

The torque is obtained in a similar manner; we give

the gradient of the potential with respect to the x
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component of the unit vector û1. This is

LU

Lû1x

~ R{12{R{6
� � Le û1, û2, r̂

� �

Lû1x

ze û1, û2, r̂
� �

6R{7{12R{13
� � LR

Lû1x

,

ðA27Þ

where

Le û1, û2, r̂
� �

Lû1x

~e0ev û1, û2

� �
mgm{1 x0ð Þ Lg x0ð Þ

Lû1x

ze0gm x0ð Þvev{1 û1, û2

� � Le û1, û2

� �

Lû1x

:

ðA28Þ

The derivatives occurring in these equations are given

by

Le û1, û2

� �

Lû1x

~x2e3 û1, û2

� �
û2x, ðA29Þ

LR

Lû1x

~{ 1=s0ð Þ
Ls û1, û2, r̂
� �

Lû1x

~ 1=2ð Þ
s û1, û2, r̂
� �

s0

� 
3
Lg xð Þ
Lû1x

,

ðA30Þ

where

Lg Xð Þ
Lû1x

~{
X

2
r̂x

2 r̂:û1zr̂:û2

� �

1zX û1
:û2

� � z
2 r̂:û1{r̂:û2

� �

1{X û1
:û2

� �

( )"

zX û2x

r̂:û1{r̂:û2

� �2

1{X û1
:u2

� �2 z
r̂:û1zr̂:û2

� �2

1zX û1
:û2

� �2

( )#

:

ðA31Þ
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